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ABSTRACT
In this paper, we put forward the new variant of graph energy namely, the minimum vertex connectivity energy
of a graph. Further, we have obtained some bounds for this newly introduced parameter.
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1. INTRODUCTION
Let G = (V, E) be any connected graph. The number of vertices of G we denote by n and the number of edges we
denote by m, thus |[V(G)| = nand |E(G)| = m. For any integer x, g is the largest integer greater than or equal

to x. A subset C of a vertex set I is said to be vertex-connectivity set if the removal of vertices in C results in a
disconnected graph. The minumum cardinality among such a set is considered for our study. For undefined
terminologies we refer the reader to [7].

The energy E (G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix
of G. This quantity, introduced almost 30 years ago [8] and having a clear connection to chemical problems [16],
has in newer times attracted much attention of mathematicians and mathematical chemists [1, 4, 5, 8, 9, 10, 11,
12,15, 16, 17, 19].

The vertex connectivity matrix is defined as follows.
Definition 1. Let C be any minimum vertex-connectivity set of G. The minimum covering matrix of G isthe n X n
matrix A.(G) = (a; j), where

1, if vyv; € E;

a; =131, ifi = jand v; € C;

0, otherwise.

The characteristic polynomial of A,.(G) is denoted by
fn(G,1):=det(AMl — A.(G))

The minimum vertex-connectivity eigenvalues of a graph G are the eigenvalues of A,.(G). Since A, (G) is real and
symmetric, its eigenvalues are real numbers and we label them in non-increasing order A; = 1, = --- = 4,,. The
vertex-connectivity energy of G is then defined as

E.(G) = XLy 1A4)-

In this paper, some new bounds for the vertex-connectivity energy E.(G) of a graph G are presented.

2. MAIN RESULTS
For the sake of completeness, we mention below some results which are important throughout the paper.

Lemma 1 /1] If A1, 4,,+, A, are the eigenvalues of A.(G), then
i=1 [4? =2m +|C]. (1
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Theorem 1 [ 14] Suppose a; and b;, 1 < i < n are positive real numbers, then

MM
Lyaf XL 2t TR, ab)? )
where M; = max ~ (a;); M, = max i (b)); m; = min i (a;) and m, = min » (b))
1=isn <isn sisn sisn

Theorem 2 /i3] Let a; and b;,, 1 < i < nare nonnegative real numbers, then
Ly af Xy b — (Tl aib)? < _(M1M2 mymy,)? 3)
where M; and m; are defined 51m11arly to Theorem 1.

Theorem 3 /2] Suppose a; and b;, 1 < i < n are positive real numbers, then
InXity aib; — Xiey a; Xty byl < a(n)(A —a)(B — b) “4)
where a, b, A and B are real constants, that foreach i, 1 <i<n,a <q; <Aand b < b; < B. Further, a(n) =

n 1_n
n;(l——;).
n

Theorem 4 [ 6] Let a; and b;, 1 < i < n are nonnegative real numbers, then
b2+rRZLIaLS(r+R)(Z L, a;b) Q)
where r and R are real constants, so that for each i, 1 < i <n, holds, ra; < b; < Ra;.

3. BOUNDS ON THE MINIMUM COVERING ENERGY OF A GRAPH
In this section, a variety of lower bounds for the vertex-connectivity energy of a graph are presented.

Theorem 5 Suppose zero is not an eigenvalue of A.(G). Then

A1y
Eo(6) 2 Mo, (6)
1 n
where A, and A,, are minimum and maximum of the absolute value of 4;'s.

Proof. Suppose 44, 4,, -, 1, are the eigenvalues of A.(G). We assume that a; = |1;| and b; = 1, which
by Theorem 1 implies

m AR, 17 < (f L, 142
@m+|Chn<: (“1”") Q) (E, (6))?

EC (G) > ,/Alln,/(2m+|c‘|)n’
Ai+n
as desired.

Theorem 6 Let G be a graph of order n and size m, then

E(6)2 [@m+ IChn—2 (4, - 1) 0

where A, and A,, are minimum and maximum of the absolute value of 4;'s.

Proof. Suppose 44, 4,, -, 1, are the eigenvalues of A.(G). We assume that a; = 1 and b; = |4;|, which
by Theorem 2 implies

2
L 12 AP = Cy AP < 5 (A — 20)?

@m+[CDn — (E(6))? <™ (A — 4,)?

E(6)2 [@m+ IChn— (4, = 1Y,

as asserted.
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Theorem 7 Let G be a graph of order n and sizem. Let A, = A, = -+ = A,, be a non-increasing
arrangement of eigenvalues of A;(G). Then

E.(G) = /2mn + n|C| — a(m)(|A,] — |2, ])? (8)
where a(n) =n@ (1 -~ B2 0).

Proof. Suppose 44,4, -+, 4,, are the eigenvalues of A.(G). We assume that a; = |4;| = b, a = |4,| =
b and A = |A;| = b, which by Theorem 3 implies
InXiq 142 — Qi 14D < am)(A4] —124,D)? ©)
Since, E.(G) = X1, 4], 2y |4;]2 = 2m + |C|, the above inequality becomes,
(@m+|CPn - E(6)? < a(m)(|141] — [2,D?,
wherefrom (8) follows.

2
Corollary 8 Since a(n) < nT, then according to (8), we have
Ee(6) = y2mn + niC| — a(m) (4] = |2,])?

2
> \/Zmn +n|Cl == (1] = 12D
This means that inequality (8) is stronger of inequality (7).

Theorem 9 Let G be a graph of order n and sizem. Let A, = A, = -+ = A,, be a non-increasing
arrangement of eigenvalues of A;(G). Then

A1 || An|n+2m+|C|
E >
(0 = (10)

where 4, and A,, are minimum and maximum of the absolute value of 4;'s.

Proof. Suppose A, 4,,++, A, are the eigenvalues of A.(G). We assume that b; = |4;|, a; = 1 r = [1,]
and R = |1,|, which by Theorem 4 implies
P G+ 1A B2y 1< (] + 1D Sy 124 (11)
Since, E.(G) = X1, |4l 2 |42 = 2m + |C|, from (11), inequality (10) directly follows from Theorem 4.
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