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ABSTRACT 
In this paper, we put forward the new variant of graph energy namely, the minimum vertex connectivity energy 

of a graph. Further, we have obtained some bounds for this newly introduced parameter.  
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1. INTRODUCTION 
Let � � ��, �� be any connected graph. The number of vertices of � we denote by � and the number of edges we 

denote by 	, thus |����| � � and |����| � 	. For any integer �, � 
� � is the largest integer greater than or equal 

to �. A subset � of a vertex set � is said to be vertex-connectivity set if the removal of vertices in � results in a 

disconnected graph. The minumum cardinality among such a set is considered for our study. For undefined 

terminologies we refer the reader to [7].  

 

The energy ���� of a graph � is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix 

of �. This quantity, introduced almost 30 years ago [8] and having a clear connection to chemical problems [16], 
has in newer times attracted much attention of mathematicians and mathematical chemists [1, 4, 5, 8, 9, 10, 11, 

12, 15, 16, 17, 19].  

 

The vertex connectivity matrix is defined as follows.  

Definition 1. Let � be any minimum vertex-connectivity set of �. The minimum covering matrix of � is the � � � 

matrix ����� � ���,��, where  

 ��� � �1,  ��  ����   ∈   �; 1,  ��  �  �   �  ���  ��   ∈   �; 0,  !"ℎ$%&�'$.   

The characteristic polynomial of ����� is denoted by  

 �)��, *�: � �$"�*, - ������  

  

The minimum vertex-connectivity eigenvalues of a graph � are the eigenvalues of �����. Since ����� is real and 

symmetric, its eigenvalues are real numbers and we label them in non-increasing order *. / *� / ⋯ / *). The 

vertex-connectivity energy of � is then defined as  

 ����� � ∑)�2. |*�|.  
  

In this paper, some new bounds for the vertex-connectivity energy ����� of a graph � are presented.  

 

2. MAIN RESULTS 
 For the sake of completeness, we mention below some results which are important throughout the paper.  

 

Lemma 1 [1] If *., *�, ⋯ , *) are the eigenvalues of �����, then  

 ∑)�2. |*�|� � 2	 4 |�|. (1) 
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Theorem 1 [14] Suppose �� and 5�, 1 6 � 6 � are positive real numbers, then  

 ∑)�2. ��� ∑)�2. 5�� 6 .7 �89:9;<:<; 4 8<:<;9:9; ���∑)�2. ��5��� (2) 

 where =. � 	��  :>?>@ ����; =� � 	��  :>?>@ �5��; 	. � 	��  :>?>@ ���� and 	� � 	��  :>?>@ �5��  

  

Theorem 2 [13] Let �� and 5�, 1 6 � 6 � are nonnegative real numbers, then  

 ∑)�2. ��� ∑)�2. 5�� - �∑)�2. ��5��� 6 );
7 �=.=� - 	.	��� (3) 

 where =� and 	� are defined similarly to Theorem 1.  

  

Theorem 3 [2] Suppose �� and 5�, 1 6 � 6 � are positive real numbers, then  

 |� ∑)�2. ��5� - ∑)�2. �� ∑)�2. 5�| 6 A����� - ���B - 5� (4) 

 where �, 5, � and B are real constants, that for each �, 1 6 � 6 �, � 6 �� 6 � and 5 6 5� 6 B. Further, A��� ��� )� ��1 - .) � )� ��.  

  

Theorem 4 [6] Let �� and 5�, 1 6 � 6 � are nonnegative real numbers, then  

 ∑)�2. 5�� 4 %C ∑)�2. ��� 6 �% 4 C��∑)�2. ��5�� (5) 

 where % and C are real constants, so that for each �, 1 6 � 6 �, holds, %�� 6 5� 6 C�� .  
 

3. BOUNDS ON THE MINIMUM COVERING ENERGY OF A GRAPH 
In this section, a variety of lower bounds for the vertex-connectivity energy of a graph are presented.  

 

Theorem 5 Suppose zero is not an eigenvalue of �����. Then  

 ����� / �DE:E@D��<F|G|�)E:FE@ . (6) 

 where *. and *) are minimum and maximum of the absolute value of *�′'.  

  

Proof. Suppose *., *�, ⋯ , *) are the eigenvalues of �����. We assume that �� � |*�| and 5� � 1, which 

by Theorem 1 implies  

 ∑)�2. |*�|� ∑)�2. 1� 6 .7 �8E@E: 4 8E:E@���∑)�2. |*�|�� 

 �2	 4 |�|�� 6 .7 ��E:FE@�;
E:E@ ��������� 

 ����� / �DE:E@D��<F|G|�)E:FE@ , 
 as desired.  

 

Theorem 6 Let � be a graph of order � and size 	, then  

 ����� / 8�2	 4 |�|�� - );
7 �*) - *.�� (7) 

 where *. and *) are minimum and maximum of the absolute value of *�′'.  
  

Proof. Suppose *., *�, ⋯ , *) are the eigenvalues of �����. We assume that �� � 1 and 5� � |*�|, which 

by Theorem 2 implies  

 ∑)�2. 1� ∑)�2. |*�|� - �∑)�2. |*�|�� 6 );
7 �*) - *.�� 

 �2	 4 |�|�� - �������� 6 );
7 �*) - *.�� 

 ����� / 8�2	 4 |�|�� - );
7 �*) - *.��, 

 as asserted.  
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Theorem 7 Let � be a graph of order � and size 	. Let *. / *� / ⋯ / *) be a non-increasing 

arrangement of eigenvalues of �G���. Then  

 ����� / D2	� 4 �|�| - A����|*.| - |*)|�� (8) 

 where A��� � �� )� ��1 - .) � )� ��.  

  

Proof. Suppose *., *�, ⋯ , *) are the eigenvalues of �����. We assume that �� � |*�| � 5�, � � |*)| �5 and � � |*.| � 5, which by Theorem 3 implies  

 |� ∑)�2. |*�|� - �∑)�2. |*�|��| 6 A����|*.| - |*)|�� (9) 

 Since, ����� � ∑)�2. |*�|, ∑)�2. |*�|� � 2	 4 |�|, the above inequality becomes,  

 �2	 4 |�|�� - ����� 6 A����|*.| - |*)|��, 
wherefrom (8) follows.  

  

Corollary 8 Since A��� 6 );
7 , then according to (8), we have  

 ����� / D2	� 4 �|�| - A����|*.| - |*)|�� 

 / 82	� 4 �|�| - );
7 �|*.| - |*)|��. 

 This means that inequality (8) is stronger of inequality (7).  

  

Theorem 9 Let � be a graph of order � and size 	. Let *. / *� / ⋯ / *) be a non-increasing 

arrangement of eigenvalues of �G���. Then  

 ����� / |E:||E@|)F�<F|G||E:|F|E@|  (10) 

 where *. and *) are minimum and maximum of the absolute value of *�′'.  

  

Proof. Suppose *., *�, ⋯ , *) are the eigenvalues of �����. We assume that 5� � |*�|, �� � 1 % � |*)| 
and C � |*.|, which by Theorem 4 implies  

 ∑)�2) |*�|� 4 |*.||*)| ∑)�2. 1 6 �|*.| 4 |*)|� ∑)�2. |*�|. (11) 

 Since, ����� � ∑)�2. |*�|, ∑)�2. |*�|� � 2	 4 |�|, from (11), inequality (10) directly follows from Theorem 4.  
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